Reversible Fluorescence Photoswitching in DNA
نویسندگان
چکیده
We describe the engineering of reversible fluorescence photoswitching in DNA with high-density substitution, and its applications in advanced fluorescence microscopy methods. High-density labeling of DNA with cyanine dyes can be achieved by polymerase chain reaction using a modified DNA polymerase that has been evolved to efficiently incorporate Cy3- and Cy5-labeled cytosine base analogues into double-stranded DNA. The resulting biopolymer, "CyDNA", displays hundreds of fluorophores per DNA strand and is strongly colored and highly fluorescent, although previous observations suggest that fluorescence quenching at such high density might be a concern, especially for Cy5. Herein, we first investigate the mechanisms of fluorescence quenching in CyDNA and we suggest that two different mechanisms, aggregate formation and resonance energy transfer, are responsible for fluorescence quenching at high labeling densities. Moreover, we have been able to re-engineer CyDNA into a reversible fluorescence photoswitchable biopolymer by using the properties of the Cy3-Cy5 pair. This novel biopolymer constitutes a new class of photoactive DNA-based nanomaterial and is of great interest for advanced microscopy applications. We show that reversible fluorescence photoswitching in CyDNA can be exploited in optical lock-in detection imaging. It also lays the foundations for improved and sequence-specific super-resolution fluorescence microscopy of DNA.
منابع مشابه
Fluorescence photoswitching based on a photochromic pKa change in an aqueous solution.
Reversible fluorescence photoswitching of RSA-AZO dyad 1 was clearly demonstrated in an acidic aqueous solution. The fluorescence photoswitching mechanism is based on the reversible ring opening/closing reactions of the RSA unit induced by a photochromic pK(a) change along with the photoisomerization of the AZO unit.
متن کاملReversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration.
We demonstrate that photoswitchable markers enable fluorescence fluctuation spectroscopy at high molecular concentration. Reversible photoswitching allows precise control of the density of fluorescing entities, because the equilibrium between the fluorescent ON- and the dark OFF-state can be shifted through optical irradiation at a specific wavelength. Depending on the irradiation intensity, th...
متن کاملOne-pot synthesis of monodispersed silica nanoparticles for diarylethene-based reversible fluorescence photoswitching in living cells.
A small 29 nm monodispersed silica nanoparticle 1a was synthesized as a diarylethene-based reversible fluorescence photoswitch by copolymerizing silane precursors in one-pot including 3a and 4. Reversible photoswitching of nanoparticle 1a was successfully achieved in living cells to show its potential as a highly distinguishable and safe fluorescence probe for cell tracking.
متن کاملPhotoswitching-Free FRAP Analysis with a Genetically Encoded Fluorescent Tag
Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring protein dynamics in live cells that has provided many important biological insights. Although FRAP presumes that the conversion of a fluorophore from a bright to a dark state is irreversible, GFP as well as other genetically encoded fluorescent proteins now in common use can also exhibit a reversi...
متن کاملFluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters
We demonstrate nanoscale resolution in far-field fluorescence microscopy using reversible photoswitching and localization of individual fluorophores at comparatively fast recording speeds and from the interior of intact cells. These advancements have become possible by asynchronously recording the photon bursts of individual molecular switching cycles. We present images from the microtubular ne...
متن کامل